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1. We assume that the behavior of the tracking object ¥ is described
by the equations

dx ’

E%=£§%“nﬁ-+gmum G=1,....7) (1.1)

and the behavior of the tracked object N by the equations
dy .
2= 2 O%+g000  (=1...,7) (1.2)
k=1

or in vector form

d d
=AMz +emuq, Z=BOytewor (1.3)
The vectors x(xy, ..., x.) 8and y(y;, ..., Y satisfy the initial
conditions
21 (O) =%10) .+ .-, 7%, (0) = Zpgs )1 (0) =Y -+ -1 Y, (0) =Y (1.4)

and the control functions u(t) and v(t) satisfy the conditions
lu@|<<m, [2@)<n (1.9)

The coefficients a1, b-k(t), cj(t), g;(t) are assumed to be func-
tions which are differentiable r times. We shall also assume that the
control function v(t) is already known when the function u(t) is chosen.

In [1,2] the following problem is formulated: If the equations

Bt =y (), . .., 7, (1) =y, (t)

are satisfied at time t = t;, then t; is called the instant of inter-
ception. Let the control functions v(t) and u(t) be given. The lowest
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positive value of t for which interception takes place is denoted by Tuv.
We set

y e 3 7 0 . g o " H Eral
r o=min, T =max, T, == max, min, T,

It is required to find a pair of control functions uo(t), vo(t) (these
control functions are said to be optimal) for which TLo,0 = 7%, The value
of T% can be used as & criterion in the choice of the parameters which
define the motion of the object M. The necessary conditions which must
be satisfied by uo(t), vo(t) are given in 11,2]‘ However, an efficient
method of finding the optimal control functions has not yet been shown.
For this reason it is of interest to have estimates of the length of time
after which interception is ensured for any behavior of the object A.

The present note describes a method of finding one such estimate for a
definition of interception which is slightly different from the one used
in [1]. Let some numbers gy >0, €y > 0 be given. By the interception
time t; we shall mean a time ty > 0 for which the conditions

fzg () — @l ey, [z () — e (0 oo (1.4

are satisfied.

The set L of points T, which is included in [0, ®), is defined in the
following manner: If T &L, then for any control function v(t) there is
at least one function ua(t) such that on v(t) and u(t) there will be an
interception at time T.

We shall describe below a method for determining whether a point T be-
longs to the set L,

For any instant T of L and any control function »(t) a method is in-
dicated for determining the control function u(t) which will produce
interception at time T. '

It should be noted that the case in which the behavior of the tracked
object is not known in advance is the more interesting one. However,
there are problems for which the above formulation is valid.

The solutions of Equatioms (1.1) and (1.2), as is known, may be re-
presented in the form
T T
2, (1) =28 (T) + S K,mu@dy, y; D=y + S G;(t) 2 (v) dv
0 0 .7

D=3 0;Mey  KO=3 e@@@ec@ G=1...,n

fox) i==]
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Here the vectors ¢.(¢;y, ..., ¢;,) form a fundamental system of solu-
tions of the homogeneous equation

do _
T =4a0e (1.8)

with the initial conditions @ij(O) = aij' and the vectors ¢ .(y;;, ...,
¥;,) form a fundamental system of solutions of equation

dy .
T=—AT P (1.9)

1

with the initial conditions y,.(0) = B-j, where §,. is the Kronecker
delta. Similar formulas apply {o yj°(7), Gj(T).

The conditions for interception (1.6) at time T are of the form

T T
]AJ.(TH& G, (t)v(t)dr—g K;mu@dr|<e
0 0
A(T) =y (T)—=2(T) (F=1,2) {1.10)

The sets of control functions u(t) and v(t), respectively, satisfying
the conditions

T T
gKl(t)u(r)dtzza, SGl(r)v(r)dt=b
0 0

will be denoted by U(a), V(b). For any e in [ -4, Apl, b in [ =By Byl
we can find control functions u(t), v(t) belonging to these sets:
T T
AT=mS | Ky (1) 1 d, BT=nS 16y (¥)] dv .11
0 ]

We set

K:(vyu(vydr, o (e)=inf,

at (a) = sup,, Ki{(vyu(vydr, ucsUla

B*(8) =sup,\ G2(x)w(¥)dr, B-(8) = inf \ Ge(Dov(x)dr, v&V (b)

Do Y D S
Py Oy

If TEL, then the conditions
A+ By — Ap <oy, AM—Brp4Ar>—g {1.12)

are satisfied.

For example, suppose that the first of these conditions is violated:
then for the control fumction
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v (t) = n sign Gy (1) (v [0, T])

we cannot find a function u(T) for which there will be interception at
time T. Let us assume that for a given T the conditioms (1.12) are
satisfied. Let b E [—-BT, BT]. We set

1+ (b, &1) = Aqs + B* (B) — sup, a* (a)
17 (b, &) == Aa + B~ (b) — inf, a~ (a)
aE{A;+b~sl, A1+b+8d ﬂ {WAT' AT]
In order that T should be an element of L, it is necessary and suffi-
cient that for any b in [—-BT, Br] the inequalities
‘\{+ (by El) — E2 < Or T‘ (bx e1) + €2 > 0 (1‘13)
be satisfied.

Let one of these conditions, say, the first, be violated, and let

Ap ~+ B* (b1) — sup, at (a) > e, a € [Ar 4 by e, Ay b+ e
hold for some b,.

Then for the function v(T) on which ﬁ+(b1) is reached (we shall show
later a method for constructing such a function), we cannot find a
control function u(T) which simultaneously satisfies the two conditions
(1.12) and (1.13). The possibility of an effective verification of these
conditions will be considered in Section 2.

Let o € l-Aq, Apl, b= [ By, Brl be given. The symbols u'(T, @),
u (T, a), v*(r, b)Y, v (71, b) will denote functions of T on which we have
ot(ay, o (a), PTeb), PT(B). We set

_ X (1) _6G@
KO=%w ‘O aw
K+*=sup K(v), K-=inf,K(x), G*=sup,G(x), G- =inf,G(¥) (vEIO, T
Iz, y)=m S | K1 (T)dT, E(z, y)=n R [Gi{t)jdr
o (x, V) 8 (x. ¥)

Here o(x, y), O(x, y) are sets belonging to [9, 7] and such that if
TEo(x, y), then y > K(7) > x, and similarly, if 7& &(x, y), then
y > G(1y > .

In what follows we shall need the following properties of the func-
tions K(T), G(t). Each of the equations

K(1)=d, G(1)=d
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where d is an arbitrary number, can have only a finite number of roots
in [0, 7],

A sufficient condition for this is the independence of the vectors
clo(w), s cro(T) and glo(T), cen grO(T), respectively (see, for
example, [2}), where

ded_, (1) .
a® (1) = ¢ (1), CjO(T)=;—A(T)C?—1+T =1,...,1
dg®_ (7
gl =g, gfM=—B@®_(v+ i—;—%—{—) G=1...,1

The proof of this fact is similar to the proof of Theorem 15 of
Section 3 of [2].

We shall also show that K(1) cannot have a discontinuity of the first
kind in (0, 7. If at the point T, the function K(T) has a discontinuity
of the first kind, then KI(TI) =0, Ky(r)) =0

It follows from (1.7) that

D0 = 0@ 4 0,y ) =3 0@ @ 4y @) =1, ... r =1

1=} i=1

We now note that at the point 7, at least one of the first r - 1 de-
rivatives of the function K,(7) must be different from zero, for other-
wise the vector

r

E=73 9, (T)%; (m)

i=1

vanishes, since the system of equations
(E,C?(Tﬂ):o (I:i,...,r}

can have only a trivial sclution because the vectors clo(Tl), . crO(Tl)
are linearly independent. But if the vector E is a zero vector, then
since the vectors y;(1;) form a fundamental system, all the numbers
¢12(13, e ¢r2(1) must vanish; this is impossible, since the Wronskian
of the system (1.8) would then vanish at the point T.

The function KI(T) has similar properties. Let
Kim)=K'(t)=... =KV =Km)=K'(t)=. .. K V(r)=0

be true at the point T, and let at least one of the values KI(S)(TI),
Kz(s)(Tl) be different from zero.
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By L’'Hospital’s rule

lim K200 _ i K9 (0)
Tty K; (T) =T K},(s) (—;‘)

Since s r ~ 1, it follows that Kz(S)(T) is a continuous function,
and if KI(S)(TI) # 0, then

lim K@ i 0@
T->T,-0 Kl(s’ {t) T=> Ty~ Kl(s) (1)

It was shown in |3} that

u* (7, a) = msign Ky (1) if v a(yo(a), K
u* (v, a) = — msign K, (1) if teo(K-, yola))

where Yo(a) is a root of the equation

Ag — a
I{(K-, y)= Tz s yE[K-, Kt) (1.14)

u~ (%, @) = — msign Ky (z} if t€oyla), K

u= (v, a) = msign Ky (1) if teos(K, y(a))
where yl(a) is a root of the equation

Ap—a
Iy, KN=—"5—,  y&[k-, k'] (1.15)

We replace the quantities u, =, X, 0, v, A, a, I in the above formulas
by v, n, G, 8, x, B, b, E, respectively, to obtain the expressions for
v+(T, b), v (v, b). PFrom the above mentioned properties of the function
K(t) it follows that the left-hand parts of (1.14) and (1.15) are strict-
ly monotonic continuous functions of y. Since

ae[—Ap, Agl,  I(K-, K)=0. I{K-, K¥)=A,

it follows that Equations (1.14) and (1.15) have unique solutions. Let
us consider the time T for which the conditions (1.12) and (1.13) are
satisfied. Let the control function v(T) be given for [0, T]. We shall
construct the control function u(T) for which there will be interception
at time 7. We shall also prove thereby that the conditions (1.12) and
(1.13) are necessary and sufficient conditions for T to be an element of
L. We set.

T T
m@=a+{G@r@a,  me)=a+ {@@o@ar
1] [4]

From the definition (1.11) of BT it follows that
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Gy(tye(v)dt | < B,

C oy~

By virtue of (1.12) the functions cx+(a), o (a), considered as func-
tions of a, are defined on ["1(”) - &, ny(v) + 51] M {"AT' AT].

From the above properties of the function K(7t) it follows that (I+(a)
and « (e) are continuous in [—AT, AT]. We shall denote by a+ and a the
points at which we have, respectively,

sup, a* (2), inf, 2~ (@) if a&m (v) —a, mi(v) 4 al N [~ Ap, Ag]
We shall show that
w(t)z==ut(t,a*)y 1if na(v)zat(a*)

In fact, u+(T, a+) S U(a+) and, consequently, the first of the condi-
tions (1.6) is satisfied. The second condition of (1.6) is satisfied,
since, by virtue of (1.13)

Bz -+ B (m (¥)) —a*(a*) e
and at the same time
Az + B (n (0)) 2 na (v) 2 2* (a¥)
Similarly it can be shown that
u(r)y=u"(v,a”) whenn(v)<a (a7)
Now let
o~ (a7) < na(v) < at (a*) (1.16)
There are two possibilities:
1) At least one of the equations in «
at (a) = nz (v), o~ (a) = na(v) (1.17)
has a root in the interval [nj(v) - &), nj(») + g,].
Let the first of these equations have a root at the point ag; then
u(t) = ut(t, ap)
If the second equation has a root at the point ay, then
u(t)=u(1,ay)

2) Neither of Equations (1.17) has a root in [n;(9) - &, n (») + g].
In that case, by virtue of the condition (1.16) and the equalities
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a~(Agp) =at (Ag), a” (— Ap) = at (— A4y)
we have the relation

a” (ny (v)) < ng (v) < at (11 (v)) (1.18)

We introduce the function

u, (v) = it (7, 7 (2)) + (1 — R) ™ (%, n1 () <Ay (1.19)
which depends on the parameter A.
This function belongs to the set U(ny(v)) for any value of A in (1.19).
In fact
f, (MISAu N +E =] (T, nE)=mn

T T T
S KBimu@ds=2 | K@ @ me)dr+a—n) S Ky () u (%, n (v) 4T = 1, (2)
0 (1]

n
The equation

Aat (ny (2) + (1 —~A) &~ (4 (2)) = na (v) (1.20)
which is linear in A, has, by virtue of (1.18), a root

ng (v) — a” (m (7))

bo = aFlm ) —a- (m ()

which belongs to (0, 1).
Thus
u(t)=u,, (%)

2. ¥We now consider the canputatianai side of the problem. The deter-
mination of K .(v), G (T1), x5 (1), 0(?) rediuces, as can be deduced from
(1.7), to the calculation of the normal fundamental systems of solutioms
of Equations (1.8) and (1.9). The methods for finding these solutions by
means of high-speed digital computers or analog computers are well known.
The condition (1.12) is easily checked since AT and BT are calculated by
the simple Formulas (1.11). Let us discuss the verification of the con-
ditions (1.13). The function u*(a) has not more than one extremum in the
interval {-AT, AT}.

Indeed, from the definition of Yol @) and the restrictions imposed on
the function K(1) it follows that Yol @) decreases monotonically in the
strict sense from the value K' to the value K~ when & varies from — AT

to AT We shall show that
da*(a)

= Yo (a) 2.4}
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Prom the definition of u+(a) it follows that

.V S K (%) K1 (v) sign K, (v) dv
w(Aa)

at(a+ Aa)—at(a) 2m
Ae

where

© (Aa) =0 (yo (2 + Aa), yo(a))

Applying the generalized mean value theorem and noting (1.14) that

m | KosmKma= T, wetb)<K@O<n@ if T€o(be)
o (Aa)

we obtain (2.1) by passing to the limit. Similarly

dap+ (b da~ ( dp= (b
LY 0w, ———Bd,,‘ )

=2 (b) 2.2)

Here xo(b) is decreasing monotonically in the strict sense and yy(a)

and x. (b) are increasing monotonically in the strict semse. In order to
verify (1.13) we must calculate

{t(b) =supyat(a), a€[h+b—e,Mi+b+e], be([— By, Byl

1f the function y;(a) is positive and does not vanish in the interval
(0 = By, Ay + Bp N [-4p, Ap, then for a given b

§+(())=G+(A1+b+E1) if A1+b+!1<AT

L) =at(4y) if Ai+bd4ea>Ap
If the function yo(a) is negative, then

{r@)=a*(Ar+b—e)when Ay + b — e > — Ag, (D) = at (— Ap)when
A1+b—51<‘—A1~

If y,(a) vanishes at the point o* & [Al - Bp, Ay + B N [ -4yq, a7l,
then
Lrd)=a*(Av+b+ey

£+ (b) = a* (a*)
gHh)=a*(ba+b—e)

if b&[— By, a* — A1 —w}
if b€ a*—A1—1g, a*— A+ 6]
if be(a*— A1+ &, By
Similar relations are also readily written for

™ (b) = inf, 2~ (a), a€ (A +b—e, Ar4b+e,

be[— By, B;)
Thus the functions

B* (@), £ (), B~(8), 5~ ()

are very simple in form. The graphs of these functions, therefore, can
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be constructed with any desired degree of accuracy if we calculate the
values of the functions and their derivatives at a comparatively small
number of points.

Let us consider a method of calculating these functions at specified
points. (We shall thereby also prove the possxbility of an efficient
check of the condltions (1.13).) A calculation of ot {a) reduces to find-
ing the function u (a). A root ¥p(a) of Equation (1.14) is most con-
veniently found by some method of successive approximations, for example,
the method of false position. Since the left-hand part of (1.14) is a
monotonically increasing function of y, it follows that to determine
¥g{e) to a given degree of accuracy we need to calculate the value of
(K", y) at a small number of points. To calculate I(K™, y) for a given
y we must find the set o(X , y). The boundary points of this set are
roots of the equation in 7

K{t)=

As was pointed out above, this equation can have only a finite number
of roots in {9 ?ﬁ, and consequently o(X , y) consists of s finite number
of intervals and isolated points.
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